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ABSTRACT

Let Fk be a free group of rank k ≥ 2 with a fixed set of free generators.

We associate to any homomorphism φ from Fk to a group G with a left-

invariant semi-norm a generic stretching factor, λ(φ), which is a non-

commutative generalization of the translation number. We concentrate

on the situation where φ: Fk → Aut(X) corresponds to a free action

of Fk on a simplicial tree X, in particular, where φ corresponds to the

action of Fk on its Cayley graph via an automorphism of Fk. In this case

we are able to obtain some detailed “arithmetic” information about the

possible values of λ = λ(φ). We show that λ ≥ 1 and is a rational number

with 2kλ ∈ Z[1/(2k− 1)] for every φ ∈ Aut(Fk). We also prove that the

set of all λ(φ), where φ varies over Aut(Fk), has a gap between 1 and

1+(2k−3)/(2k2−k), and the value 1 is attained only for “trivial” reasons.

Furthermore, there is an algorithm which, when given φ, calculates λ(φ).
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1. Introduction

1.1. Random subgroup distortion and growth of random auto-

morphisms. Let G be a finitely generated group with a word metric dS deter-

mined by a finite generating set S and write |g|S := dS(1, g) for g ∈ G. Recall

that if H = 〈T 〉 is a subgroup of G generated by a finite set T , then a function

f is said to be a distortion function of H in G if for every h ∈ H we have

|h|T ≤ f(|h|S). The subgroup H is quasi-isometrically embedded in G if and

only if for some (and hence for all) choices of S, T there is a linear distortion

function for H in G, that is, if the ratio |h|T /|h|S is bounded on H \ {1}.
The translation number of an element g ∈ G is defined as

λ(g) = λS(g) = lim
n→∞

|gn|S
n

and the limit exists by the subadditivity of the sequence |gn|S . If g has infinite

order, then the cyclic subgroup 〈g〉 is quasi-isometrically embedded in G if and

only if λS(g) > 0 for some (and hence for any) finite generating set S of G.

The study of “random” or “generic” behavior is currently an increasingly

active area of investigation in many different group-theoretic contexts. (See, for

example, [23, 43, 25, 10, 11, 12, 13, 14, 2, 3, 4, 1, 46, 32, 33, 35, 21, 42].) In this

paper we concentrate on algebraic and geometric consequences of subadditivity,

specifically of Kingman’s Subadditive Ergodic Theorem.
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We investigate a “noncommutative analogue” of the notion of a transla-

tion number which is defined for a “mapped-in” subgroup H = φ(F ), where

φ: F → G is a homomorphism of a free nonabelian group F = F (A) of fi-

nite rank into a group G with generating set S. Namely, there is a number

λ = λ(φ,A, S) ≥ 0 such that for long “random” freely reduced words w ∈ F (A)

we have |φ(w)|S/|w|A ≈ λ. (Instead of the word metric dS one could actually

take an arbitrary semi-norm on G.)

Throughout this paper we fix the notation that F = F (A) is the free group

with basis A = {a1, . . . , ak} where k ≥ 2. For any w ∈ F let |w| denote the

length of the unique freely reduced word over A±1 representing w. We identify

the hyperbolic boundary ∂F with the set of all geodesic rays from 1 ∈ F in

the Cayley graph Γ(F,A) of F , that is, ∂F is the set of all semi-infinite freely

reduced words over A±1 endowed with the standard topology. The space ∂F

can be identified with the space of ends or the hyperbolic boundary of F .

The Borel σ-algebra F on ∂F is generated by the cylinder sets CylA(v), v ∈ F ,

where CylA(v) consists of all infinite rays ω ∈ ∂F that begin with v. The

uniform Borel probability measure µA on ∂F corresponding to A is defined by

assigning equal weights to all cylinders based on the words on the same length.

That is,

µA(CylA(v)) =
1

2k(2k − 1)|v|−1
∀v ∈ F \ {1}.

Note that although the boundary ∂F could be defined without referring to a

particular generating setA, the uniformity of the measure µA does depend on the

choice of A. The fact that the uniform measures corresponding to two different

free generating sets may well be singular respect to each other is actually the

cornerstone of our approach. (See [20, 34] for a detailed discussion of this

phenomenon in the general context of word-hyperbolic and free groups and

of the Patterson–Sullivan measures corresponding to geometric actions of such

groups on Gromov-hyperbolic spaces.)

A ray ω ∈ ∂F can be thought of as a non-backtracking edge-path in Γ(F,A)

starting from the identity 1. We denote by ωn the vertex on ω at distance n

from 1. The measure space (∂F, µA) then becomes the space of sample paths

of the non-backtracking simple random walk (NBSRW) on the Cayley graph of

F . This is the Markov chain on F whose transition probabilities πw, w ∈ F are

equidistributed among the neighbors of w which are strictly further from the

group identity. By choosing a random µA-distributed point ω ∈ ∂F we may

think about ωn as a “random” (with respect to the NBSRW) freely reduced

word of length n in F .
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In Section 2 we prove:

Theorem A: Let F = F (a1, . . . , ak) with k ≥ 1, and let µA be the uniform

Borel probability measure on ∂F corresponding to the basis A = {a1, . . . , ak}.
Let φ: F → G be a homomorphism to a group G endowed with a semi-norm,

that is, a nonnegative function | · |G on G satisfying |gh|G ≤ |g|G + |h|G for all

g, h ∈ H .

Then:

(1) There exists a real number λ ≥ 0 such that

lim
n→∞

|φ(ωn)|G
n

= λ

µA-a.e. and in L1(∂F, µA).

(2) Suppose further that the image group φ(F ) is non-amenable, and that the

sequence bn = #{g ∈ φ(F ) : |g|G ≤ n} grows at most exponentially. Then

λ > 0.

Note that the requirement of at most exponential growth of the bn is auto-

matically satisfied if the group G is finitely generated, and | · |G is the word

metric on G determined by a finite generating set.

Theorem A says that for a long “random” freely reduced element w ∈ F we

have |φ(w)|G/|w| ≈ λ. For this reason we shall call the number λ = λ(φ,A, |·|G),

whose existence is provided by part (1) of Theorem A, the generic stretching

factor of φ with respect to the free basis A of F and the semi-norm | · |G.

We deduce Theorem A from the fact that the sample paths of the usual simple

random walk on the group F asymptotically follow geodesics and the well-known

results on the linear rate of escape of random walks on groups [38], [29]. We

also give an alternative direct argument proof of part (1) of Theorem A applying

Kingman’s Subadditive Ergodic Theorem [37]. Part (2) of Theorem A can also

be proved using the results of Cohen [15], Grigorchuck [22] and Woess [45] on

co-growth in groups.

Example 1.1 (Stretching factors for isometric actions): A typical example of a

semi-norm | · |G comes from isometric group actions on metric spaces. Namely,

let X be a metric space with basepoint x ∈ X . For an isometry g of X define

|g|x := d(x, gx). The triangle inequality implies that |g1g2|x ≤ |g1|x + |g2|x, so

that | · |x is a semi-norm on G = Isom(X). Suppose F = F (a1, . . . , ak) acts by

isometries on X by a homomorphism φ: F → G. It is easy to see that in this

case λ(φ,A, | · |x) does not depend on the choice of a base-point x ∈ X and is
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determined by the action φ and the choice of the basis A of F . In this case we

shall denote λ(φ,A, | · |x) by λ(φ,A), or just by λ(φ) if the choice of A is fixed.

Example 1.2 (Random Subgroup Distortion): Let H ≤ G be finitely generated

groups with finite generating sets A ⊂ H and S ⊂ G, respectively. Denote the

associated length functions by | · |G and | · |H . Now H is a quotient of F = F (A).

Let φ: F (A) → G be composition of this quotient map with the inclusion of H

into G. Then |φ(w)|H ≤ |w| for any w ∈ F . If the group H is non-amenable

then by Theorem A for a long “random” freely reduced word w in F (A)

|φ(w)|H
|w| ≈ λ1 > 0 and

|φ(w)|G
|w| ≈ λ2 > 0,

and therefore
|φ(w)|H
|φ(w)|G

≈ λ1

λ2
,

where the constants λ1, λ2 > 0 do not depend on w. Thus, informally speaking,

Theorem A implies that any nonamenable finitely generated subgroup H of a

finitely generated group G generically has linear distortion in G.

Example 1.3 (Normal Forms): Let G be a nonamenable group with a finite

generating set A and the associated length function | · |G. We will denote by w

the element of G represented by a word w in the alphabet A ∪A−1.

Let L ⊆ (A ∪ A−1)∗ be a set of normal forms (not necessarily unique) for

elements of G, that is L = G. Consider, for instance, the case where L is an

automatic language for G. By Theorem A there is λ > 0 such that for a random

long freely reduced word w ∈ F (A) we have |w|G/|w| ≈ λ. Let wL ∈ L be a

word representing the same element of G as w. Then

|wL| ≥ |w|G

and hence
|wL|
|w| ≥ |w|G

|w| ≈ λ > 0.

Thus for a long random word w ∈ F (S) when we take w to a normal form

wL ∈ L, the ratio |wL|/|w| is separated from zero. This conclusion applies to a

number of experimental observations, such as those obtained by Dehornoy [17]

in the case of braid groups.

Theorem A has implications regarding the growth of random automorphisms.

Let G be a finitely generated group with a fixed word metric corresponding to
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a finite generating set S. Let φ ∈ Aut(G) be an automorphism. We define the

norm of φ with respect to S as

||φ|| = ||φ||S := max
s∈S

|φ(s)|S .

Then for any g ∈ G we have |φ(g)|S ≤ ||φ||S |g|S and hence

||φ|| = sup
g∈G,g 6=1

|φ(g)|S
|g|S

.

For an individual φ the sequence log ||φn|| is subadditive and therefore the

following limit (sometimes called the growth entropy of φ) exists:

ν(φ) := lim
n→∞

log ||φn||
n

.

It turns out that this notion has a generalization for an arbitrary finitely

generated subgroup of Aut(G):

Theorem B: Let G be a nontrivial finitely generated group with a word-metric

dS corresponding to a finite generating set S. Let H ≤ Aut(G) be a noncyclic

subgroup with a finite generating set T . Then:

(1) There is ν = ν(H) = ν(H,T, S) ≥ 0 such that for a non-backtracking

simple random walk φn on the Cayley graph of H with respect to T we

have

lim
n→∞

log ||φn||S
n

= ν

almost surely and in L1.

(2) If G has polynomial growth and H is non-amenable then ν(H,T, S) > 0.

Note that ν(H,T, S) > 0 means that ||φn||S grows exponentially with n for a

“random” automorphism φn.

Corollary C: Let F be a free group of finite rank k ≥ 2 and let H ≤ Aut(F )

be a finitely generated group of automorphisms of F such that the image H ′ of

H in Aut(Fab) ∼= GL(k,Z) is non-amenable. Then for any finite generating set

S of F and for any finite generating set T of H we have ν(H,T, S) > 0.

By the Tits alternative a subgroup of GL(k,Z) is either virtually solvable

(and hence amenable) or it contains a free subgroup of rank two (and hence is

nonamenable). Thus in the above corollary we could replace the assumption

that H ′ is nonamenable by the requirement that H ′ is not virtually solvable.
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1.2. Free actions on trees: Two interpretations of stretching

factors. In the context of free and discrete isometric actions of free groups

on R-trees (cf. Example 1.1), generic stretching factors are related to Bonahon’s

notion [5, 6] of the intersection number between geodesic currents on hyperbolic

surfaces. If G is a non-elementary word-hyperbolic group, a geodesic current on

G is a G-invariant positive Borel measure on ∂2G := {(x, y)|x, y ∈ ∂G, x 6= y}.
The space of all geodesic currents on G, endowed with the weak-∗-topology, is

denoted by Curr(G). (See [7, 31] for a detailed discussion on the subject.)

Every nontrivial conjugacy class [g] in G defines an associated “counting”

current η[g] onG. When S is a closed surface of negative Euler characteristic and

G = π1(S), Bonahon proved that the notion of geometric intersection number

between free homotopy classes of essential closed curves on S (that is, between

nontrivial conjugacy classes of G) extends to a bilinear continuous “intersection

form”

i: Curr(G) × Curr(G) → R.
Note that in this case ∂G = ∂H 2 = S1. For every hyperbolic structure ρ on

S there is an associated Liouville current Lρ ∈ Curr(G) (see [5]). Bonahon’s

construction has the following natural property: if ρ is as above and [g] is a

nontrivial conjugacy class in G then i(Lρ, η[g]) = ℓρ(g). Here ℓρ: G → R is

the length spectrum of ρ. Thus ℓρ(g) is equal to the translation length of g as

an isometry of H 2 = (̂S, ρ) and it is also equal to the ρ-length of the shortest

curve of the free homotopy class of closed curves on S corresponding to [g].

It turns out that the intersection number i(Lρ, Lρ′) between Liouville currents

corresponding to two hyperbolic structures ρ, ρ′ can be interpreted as the generic

stretching factor of a long random closed geodesic on (S, ρ) with respect to ρ′.

Namely, let p ∈ S and let v be a random unit tangent vector at p on (S, ρ). For

every n ≥ 1 let αn be the geodesic of length n on (S, ρ) with origin p and with

the tangent vector v at p. Let βn be a geodesic from the terminus of αn to p

of length ≤ Diam(S, ρ). Then γn = αnβn is a closed curve on S. Bonahon’s

results imply that

lim
n→∞

ℓρ′([γn])

ℓρ([γn])
= lim

n→∞

ℓρ′([γn)])

n
=

i(ρ, ρ′)

π2|χ(S)| .

It turns out that a version of this interpretation applies in the context of free

groups acting on trees. Let F be a free group of finite rank k ≥ 2 In [30, 31]

Kapovich investigated a natural “intersection form” I: FLen(F )×Curr(F ) →F, where FLen(F ) is the space of hyperbolic length functions corresponding to
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free and discrete isometric actions of F on R-trees. This form still has the natural

property that for any nontrivial conjugacy class [g] in F and any ℓ ∈ FLen(F )

we have I(ℓ, η[g] = ℓ(g). Let A be a free basis of F and let ℓ ∈ FLen(F )

be realized by a free and discrete isometric action φ : F → Isom(X) of F

on an R-tree X . Let µA be the uniform measure on ∂F corresponding to A.

The measure µA on ∂F determines a uniform current νA ∈ Curr(F ) that is

analogous to the Liouville current corresponding to a hyperbolic structure on a

surface. As shown in [31], similarly to Bonahon’s situation, we have

I(ℓ, νA) = λA(φ).

Generic stretching factors are also related to the notion of the Hausdorff

dimension of a measure with respect to a metric. If µ is a measure on a metric

space (M,d), the Hausdorff dimension of µ with respect to d, denoted HDd(µ)

(or just HD(µ)), is defined as the infimum of Hausdorff dimensions of subsets

of (M,d) of full measure µ.

In [28] Kaimanovich proved that for the harmonic measure ν on ∂T associated

to a regular Markov operator P with a positive rate of escape on a tree T with

uniformly bounded vertex degrees we have

HD(ν) = h/c

where c is the rate of escape and h is the asymptotic entropy of P .

This result is relevant in our context. Indeed, let A be a free basis of F and

let φ: F → Isom(X) be a free, discrete and minimal isometric action of F on anR-tree X . Then X/F is a finite metric graph and X is the universal cover of this

graph. Let Γ(F,A) denote the Cayley graph of F with respect to A. The orbit

map w 7→ wp (where p ∈ X is a base-point) gives a quasi-isometry between the

trees Γ(F,A) and X which extends to a homeomorphism φ̂: ∂Γ(F,A) → ∂X

where ∂X is metrized in the standard CAT (−1) way: d(ζ, ξ) = e−d(p,[ζ,ξ]) for

ζ, ξ ∈ ∂X . Let µA be the uniform probability measure on ∂Γ(F,A) = ∂F

corresponding to A and let µ′
A denote the push-forward of µA via φ̂ to ∂X .

Then the result of Kaimanovich [28] mentioned above implies that

HDd(µ
′
A) =

log(2k − 1)

λA(φ)
,

where k ≥ 2 is the rank of F .
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1.3. Main results about actions on trees. Our first main result is:

Theorem D: Let F = F (A) be a free group of rank k ≥ 2. Let φ: F → Aut(X)

be a free simplicial action without inversion of F on a simplicial tree X .

Then the following hold:

(1) The generic stretching factor λ = λ(φ) is a rational number ≥ 1 with

2kλ ∈ Z[ 1

2k − 1

]
.

(2) The number λ(φ) is algorithmically computable in terms of φ, provided

X is the universal cover of a finite connected graph and φ is given by an

isomorphism between F and the fundamental group of that graph.

The most interesting case of the above theorem is whereX is the Cayley graph

of F = F (A) and where the action of F onX is determined by an endomorphism

of F .

Definition 1.4 (Generic stretching factor of an endomorphism): Let F = F (A)

where k ≥ 2 andA = {a1, . . . , ak}. Let φ: F → F be an endomorphism of F . Let

X = Γ(F,A) be the Cayley graph of F and consider the action θ: F → Isom(X)

given by θ(w)x := φ(w)x, where w ∈ F, x ∈ X . The generic stretching factor

λA(θ) corresponding to this action is called the generic stretching factor of φ

with respect to A and is denoted λA(φ) or just λ(φ) if A is fixed.

Thus λ(φ) approximates the distortion |φ(w)|A/|w|A for a long random freely

reduced word w in A±1. For instance, for the Nielsen automorphism φ ∈
Aut(F (a, b)), φ(a) = ab, φ(b) = b it turns out that λ(φ) = 7

6 . If φ is an au-

tomorphism of F (a1, . . . , ak), then the precise relationship between λ(φ) and

the traditionally studied dynamical properties of φ is not very clear. Neverthe-

less, we are able to estimate the growth of λ(φn) for hyperbolic automorphisms.

Recall that φ ∈ Aut(F ) is hyperbolic if there exist s > 1 and m ≥ 1 such that

for any w ∈ F

s||w|| ≤ max{||φm(w)||, ||φ−m(w)||}.

By a result of Brinkmann [9] an automorphism φ ∈ Aut(F ) is hyperbolic if

and only if φ does not have any nontrivial periodic conjugacy classes in F . We

prove:

Theorem E: Let F = F (a1, . . . , ak) and let φ ∈ Aut(F ) be a hyperbolic

automorphism with parameters s > 1 and m ≥ 1 as above. Then

lim inf
n→∞

n
√
λ(φn) ≥ s1/m > 1.
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It is obvious that any automorphism of a finitely generated group G equipped

with a word metric is a quasi-isometry and indeed a bi-Lipschitz equivalence.

However, from the geometric point of view, especially in light of various versions

of the Marked Length Spectrum Rigidity Conjecture, it is natural to study

finer features of quasi-isometries. Recall that a map f : (X, d) → (X ′, d′) is

called a rough isometry if there is D > 0 such that for any x, y ∈ X we have

|d′(f(x), f(y)) − d(x, y)| ≤ D. A map f : (X, d) → (X ′, d′) is called a rough

similarity if there are λ > 0 and D > 0 such that for any x, y ∈ X we have

|d′(f(x), f(y)) − λd(x, y)| ≤ D. It is interesting and natural to ask when an

automorphism is a rough similarity or a rough isometry.

An automorphism φ of F = F (A) is called a relabelling automorphism if

it is induced by a permutation of the set A = {a1, . . . , ak}±1. We say that

φ ∈ Aut(F ) is simple if it is equivalent to a relabeling automorphism in Out(F ),

that is, if φ is the composition of a relabeling automorphism and a conjugation.

Note that being a simple automorphism has a nice geometric meaning. Let F =

F (a1, . . . , ak) be realized as the fundamental group of the metric graph Γ which

is a bouquet of k circles of length 1 corresponding to the generators a1, . . . , ak.

An automorphism φ is simple if and only if, after possibly a composition with

an inner automorphism, φ is induced by an isometry of the graph Γ.

Let Pn be the uniform probability measure on the set of all elements of F of

length n. A setW ⊆ F is said to be exponentially F -generic if limn→∞ Pn(W ) =

1 and convergence to this limit is exponentially fast. Similarly, a subset C ⊆ CR
of the set CR of all cyclically reduced words is exponentially CR-generic if

limn→∞ P ′
n(C) = 1 with exponentially fast convergence, where P ′

n is the uniform

discrete probability measure on the set of cyclically reduced words of length n.

Obviously, any simple automorphism is a rough isometry and a rough simi-

larity. The converse is also true, that is, any automorphism which is a rough

similarity must be simple. (This follows, for example, from Theorem 2 of [20]

together with some standard results about Culler–Vogtmann outer space.) Here

we obtain a strengthened “random rigidity” version of this fact:

Theorem F: Let F = F (a1, . . . , ak) be a free group of rank k ≥ 2 with the

standard word metric d corresponding to the free basis {a1, . . . , ak}. Put

d0 := 1 +
2k − 3

4k2 − 2k
.

There exists an exponentially CR-generic set C ⊆ CR with the following prop-

erty.

For any φ ∈ Aut(F ) the following conditions are equivalent:
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(1) The automorphism φ is simple.

(2) We have λ(φ) = 1.

(3) We have λ(φ) < 1 + (2k − 3)/(2k2 − k).

(4) The map φ: (F, d) → (F, d) is a rough isometry.

(5) The map φ: (F, d) → (F, d) is a rough similarity.

(6) For some w ∈ C we have ||φ(w)|| = ||w||.
(7) For every w ∈ C we have ||φ(w)|| = ||w||.
(8) For some w ∈ C we have ||φ(w)|| ≤ d0||w||.
(9) For every w ∈ C we have ||φ(w)|| ≤ d0||w||.

This result shows, in particular, that the set of all possible values of λ(φ)

(where φ ∈ Aut(F )) has a gap, namely the interval (1, 1 + (2k − 3)/(2k2 − k)).

Moreover, in the above theorem we can choose d0 to be any number such that

1 < d0 < 1 + (2k − 3)/(2k2 − k).

Theorem F introduces a new dimension for rigidity results related to Marked

Length Spectra on hyperbolic groups. Indeed, it is well-known that if φ ∈
Aut(F ) fixes the lengths of all conjugacy classes (that is of all cyclic words),

then φ is a rough isometry of F . Theorem F shows that even if φ ∈ Aut(F )

preserves the length of a single “random” cyclically reduced word w then φ is

a rough isometry and indeed a simple automorphism. To prove Theorem F

we need some rather different tools and ideas, both algebraic and probabilistic.

The key ingredient there is the work of Kapovich–Schupp–Shpilrain [36] on

the behavior of Whitehead’s algorithm and the action of Aut(F ) on “random”

elements of F .

Using Theorem F it is not hard to show that the set of generic stretching

factors taken over all free actions of F (a1, . . . , ak) on simplicial trees also has a

gap. Thus we obtain:

Theorem G: Let F = F (a1, . . . , ak) where k ≥ 2. Let φ: F → Aut(X) be a

free minimal action on F on a simplicial tree X without inversions.

Then exactly one of the following occurs:

(1) There is a simple automorphism α of F such that X is φ ◦α-equivariantly

isomorphic to the Cayley graph of F with respect to {a1, . . . , ak}. In this

case λ(φ) = 1.

(2) We have λ(φ) ≥ 1 + 1/k(2k − 1).

For an automorphism φ ∈ Aut(F ) the conjugacy distortion spectrum of φ is

I(φ) :=
{ ||φ(w)||

||w|| : w ∈ F − {1}
}
.
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Kapovich proved in [30] that I(φ) is always a Q-convex subinterval of Q (that is,

a set closed under taking rational convex combinations) with rational endpoints.

Here we obtain:

Corollary H: Let φ ∈ Aut(F ) be an arbitrary automorphism. Then the

following hold.

(1) Either φ is simple and I(φ) = 1 or, else, 1 belongs to the interior of I(φ).

(1) There exists w ∈ F,w 6= 1 such that ||φ(w)|| = ||w||.

Proof: Part (1) obviously implies part (2) since, by the above-mentioned result

of [30], I(φ) is a Q-convex subset of Q.

To see that (1) holds, assume that φ is not simple. Hence φ−1 is not sim-

ple either. By Theorem F we have λ(φ) > 1 and λ(φ−1) > 1. Part (2b) of

Theorem D now implies that there exists w1, w2 ∈ F,w1 6= 1, w2 6= 1 such that

x :=
||φ(w1)||
||w1||

> 1 and y :=
||φ−1(w2)||

||w2||
> 1.

By definition of I(φ) we have x ∈ I(φ). Also, with u = φ−1(w2) we have y =

||u||/||φ(u)|| > 1 and so 1/y ∈ I(φ). Since x > 1 and 1/y < 1, the Q-convexity

of I(φ) implies that 1 belongs to the interior of I(φ), as claimed.

We also obtain an application of Theorem F concerning the notion of the

flux of an automorphism that was introduced and studied by Myasnikov and

Shpilrain in [41].

Definition 1.5 (Flux). [41]: Let G be a finitely generated group with a fixed

word metric. Let φ ∈ Aut(G).

For each n ≥ 0 define

fluxφ(n) := #{g ∈ G : |g| ≤ n, |φ(g)| > n}

and

flux(φ) := lim sup n

√
fluxφ(n)

#{g ∈ G : |g| ≤ n} .

The sequence fluxφ(n) and the number flux(φ) provide a certain dynamical

“measure of activity” of an automorphism φ. As a corollary of our results in

this paper we obtain:

Corollary I: Let F = F (a1, . . . , ak) be a free group of rank k ≥ 2, equipped

with the standard metric.
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Then for any φ ∈ Aut(F ) we have:

flux(φ) =

{
0, if φ is a relabeling automorphism,
1, otherwise.

1.4. Random elements in regular languages. By definition, a language

L over the alphabet A is regular if and only if there is a deterministic finite au-

tomaton which accepts the language L. It is a basic fact of formal language

theory that the class of languages accepted by nondeterministic finite automata

(NDFA) is also the class of regular languages. (See Hopcroft and Ullman [27].)

Nondeterministic automata are very useful because a NDFA accepting a lan-

guage L may be much smaller than any deterministic automaton accepting L.

Such an automaton is not unique and choosing some finite automaton accept-

ing L is like choosing a presentation for a group. One can choose a “random”

element in the regular language L is via a random walk in the transition graph

of any “suitable” finite state automaton M accepting the language L. We make

this precise in Section 8, where we associate to M a finite state Markov process

M ′ with the set of states being the set of directed edges in the transition graph

Γ(M) of M . The sample space Ω of M ′ is the set of semi-infinite edge-paths in

Γ(M). Each path in Γ(M) (finite or infinite) has a label that is a word (finite or

infinite) over A. If ω ∈ Ω is such an infinite path, we denote by wn = wn(ω) the

label of the initial segment of length n of ω. Any initial probability distribution

µ on the edge-set E(Γ(M)) defines a probability measure Pµ on Ω. We need to

impose a natural assumption on M in order to guarantee that the Markov pro-

cess M ′ is irreducible. This technical assumption, which is frequently satisfied

in practice, is made precise in the definition of a normal automaton in Section 8.

Again applying the Subadditive Ergodic Theorem, we have:

Theorem J: Let M be a normal automaton over a finite alphabet A and let

L = L(M) be the language accepted by M .

Let φ: A∗ → G be a monoid homomorphism, where G is a group with a

left-invariant semi-metric dG. Then there exists a number λ = λ(M,φ, dG) ≥ 0

such that for any initial distribution µ on E(Γ(M)) we have

(|φ(wn)|G)/n→ λ almost surely and in L1 with respect to Pµ.

If the initial distribution µ is supported on the edges of Γ(M) originating

at the start states of M then the word wn can be extended by a word of

uniformly bounded length to get a word w′
n ∈ L. We can think of w′

n as a

“random” element of L with respect to M and µ. Theorem J then implies that

|φ(w′
n)|G/n→ λ as n→ ∞ almost surely and in L1 with respect to µ.
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2. Random words and random walks

Convention 2.1: Let A = {a1, . . . , ak} be a free generating set of a free group

F = F (A) of finite rank k > 1. For w ∈ F we denote by |w|A, or simply |w|, the

freely reduced length of w with respect to A. Let d(w1, w2) = |w−1
1 w2| be the

associated left-invariant metric on F . Also, ||w||A = ||w|| denotes the cyclically

reduced length of f with respect to A, that is, the length of any cyclically reduced

word in the alphabet A±1 conjugate to f .

This convention, including the fixed choice of the free basis A = {a1, . . . , ak}
of F , is adopted for the remainder of the paper, unless specified otherwise.

Recall that a nonnegative function | · |G on a group G is called a semi-norm

if for all g, h ∈ G we have |gh|G ≤ |g|G + |h|G.

In this Section we shall prove Theorem A from the Introduction:

Theorem 2.2: Let F = F (A), and let µA = µA(A) be the uniform Borel

probability measure on ∂F corresponding to the generating set A = {a1, . . . , ak}
with k ≥ 2. Let φ: F → G be a homomorphism to a group G endowed with a

semi-norm | · |G. Then:

(1) There exists a real number λ ≥ 0 such that

lim
n→∞

|φ(ωn)|G
n

= λ

for µA-a.e. ω ∈ ∂F and in the space L1(∂F, µA).

(2) If the group φ(F ) is non-amenable and the sequence

bn = #{g ∈ φ(F ) : |g|G ≤ n}

grows at most exponentially, then λ > 0.

The condition on bn in the above theorem is always satisfied if G is a finitely

generated group and |.|G is the word metric corresponding to some finite gen-

erating set of G.

Any geodesic ray ω ∈ ∂F can be identified with the non-backtracking path

ω0, ω1, . . . in F starting from the group identity. Then the measure space

(∂F, µA) becomes the space of sample paths of the non-backtracking simple ran-

dom walk (NBSRW) on the Cayley graph of F starting from the identity of the

group. This is the Markov chain on F whose transition probabilities πf , f ∈ F

are equidistributed among the neighbors of f which are strictly further from the

group identity. Therefore, the number λ above is the linear rate of escape of the

φ-image of the non-backtracking simple random walk on F . We shall deduce
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Theorem 2.2 from well-known analogous properties of the usual random walks

on groups by using the fact that the simple random walk on the free group

asymptotically follows uniformly distributed geodesic rays.

Let µ be a probability measure on a group G. By definition, the sample

paths of the associated random walk (G,µ) are products gn = h1h2 · · ·hn of

independent µ-distributed increments hn. In other words, the measure P in the

space of sample paths which describes the random walk (G,µ) is the image of

the product measure µ ⊗ µ ⊗ · · · in the space of increments under the above

product map.

The following statement is known as Kingman’s Subadditive Ergodic Theo-

rem [37]. (See also [19] for a short proof.)

Proposition 2.3 (Subadditive Ergodic Theorem): Let (Ω,F , µ) be a proba-

bility space and let S: Ω → Ω be a measure-preserving operator, that is such

that for any measurable set Q ⊆ Ω we have µ(Q) = µ(S−1Q).

Let Xn: Ω → R be a sequence of non-negative integrable random variables

such that for any n,m ≥ 0

Xn+m(ω) ≤ Xn(ω) +Xm(Snω), a.e. ω ∈ Ω.

Then there exists a S-invariant random variable λ: Ω → R such that

lim
n→∞

Xn

n
= λ

almost surely and in L1 on Ω.

In particular, if S is ergodic then λ = const on Ω.

A straightforward application of Kingman’s Subadditive Ergodic Theorem

gives:

Proposition 2.4 ([26]): If the measure µ has a finite first moment
∑ |g|µ(g)

with respect to a semi-norm | · | on the group G, then there exists a number

c ≥ 0 (called the linear rate of escape of the random walk (G,µ) with respect

to the semi-norm | · |) such that |gn|/n → c for P-a.e. sample path (gn) and in

the space L1(P).

The following claim, if slightly more general than the one formulated in

[26], can be obtained in the same way by using the spectral characterization

of amenability (or by showing that c = 0 implies vanishing of the asymptotic

entropy of the random walk, and therefore amenability of the group [38]):
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Proposition 2.5 ([26]): Under the assumptions of Proposition 2.4, if the

group G is non-amenable and the semi-norm | · |G has exponentially bounded

growth and the support of the measure µ generates the group G, then c > 0.

Let now µ′
A be the probability measure on the free group F equidistributed

on the set A±1, so that µ′
A(a±1

i ) = 1/2k for i = 1, 2, . . . , k.

Proposition 2.6 (see [29] and the references therein): For P-a.e. sample path

(gn) of the random walk (F, µ′
A)

(1) There exists a limit

g∞ = lim
n→∞

gn ∈ ∂F,

and its distribution (i.e., the image of the measure P under the map

(gn) 7→ g∞) coincides with the uniform measure µA on ∂F .

(2) We have

lim
n→∞

|gn|
n

= θ =
k − 1

k

(so that the linear rate of escape of the random walk (F, µ′
A) is k−1

k ).

(3) We have

d(gn, (g∞)[θn]) = o(n).

Here [x] denotes the integer part of a number x ∈ R and (g∞)[θn] denotes

the vertex at distance [θn] from 1 on the unique geodesic ray from 1 to

g∞ in the Cayley graph of F with respect to A.

Proof of Theorem 2.2: Consider the random walk (F, µ′
A). Its image under

the homomorphism φ is the random walk on the group φ(F ) governed by the

measure φ(µ′
A). Denote its rate of escape with respect to the semi-norm | · |G

by c. Then the combination of Proposition 2.4 and Proposition 2.6 implies the

first part of Theorem 2.2. Indeed, for P-a.e. sample path (gn) the distance in

F between gn and (g∞)[θn] is sublinear, whence the distance in G (with respect

to the semi-metric determined by the semi-norm | · |G) between the φ-images of

these points is also sublinear. Since the distribution of g∞ is µA, we arrive at

the conclusion that the first part of Theorem 2.2 holds for the number λ = c/θ.

The second part of Theorem 2.2 is now an immediate corollary of Proposi-

tion 2.5.

Here is another argument establishing part (1) of Theorem 2.2 as a direct

consequence of the Subadditive Ergodic Theorem.

Let Ω = ∂F . Recall that for ω ∈ ∂F we denote by ωn the element of F that

is at distance n from 1 along the geodesic ray ω in Γ(F,A). Let Xn: ∂F → R
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be defined as Xn(ω) := |φ(ωn)|G. Also, let S: ∂F → ∂F be the standard shift

operator consisting in erasing the first letter of a semi-infinite freely reduced

word representing an element of ∂F . It is well-known that S is stationary and

ergodic.

Note that for any ω ∈ ∂F we have

ωn+m = ωn(Snω)m.

Hence

|φ(ωn+m)|G = |φ(ωn)φ((Snω)m)|G ≤ |φ(ωn)|G + |φ((Snω)m)|G.

Thus the conditions of the Subadditive Ergodic Theorem are satisfied and part

(1) of Theorem 2.2 follows.

The following is Theorem B from the Introduction.

Theorem 2.7: Let G be a nontrivial finitely generated group with a word-

metric dS corresponding to a finite generating set S. Let H ≤ Aut(G) be a

noncyclic finitely generated group with a finite generating set T . Then:

(1) There is ν = ν(H) = ν(H,T, S) ≥ 0 such that for a non-backtracking

simple random walk φn on the Cayley graph of H with respect to T we

have

lim
n→∞

log ||φn||S
n

= ν

almost surely and in L1.

(2) If G has polynomial growth and H is non-amenable then ν(H,T, S) > 0.

Proof: It is clear from the definition of || · ||S that for any φ, ψ ∈ Aut(G) we

have

||φψ||S ≤ ||φ||S ||ψ||S
and hence

log ||φψ||S ≤ log ||φ||S + log ||ψ||S .

Also, for any φ ∈ Aut(G) we have ||φ||S ≥ 1 and so log ||φ||S ≥ 0. Thus log || · ||S
is a semi-norm on Aut(G) that uniquely extends to a left-invariant semi-metric

on Aut(G) and thus on H ≤ Aut(G). Hence part (1) of Theorem 2.7 follows

directly from part (1) of Theorem A.

To see that part (2) holds suppose that H is nonamenable and that G has

polynomial growth. This implies that (H, ||·||S) has at most exponential growth.

Hence part (2) of Theorem 2.7 follows from part (2) of Theorem A.



18 V. KAIMANOVICH, I. KAPOVICH AND P. SCHUPP Isr. J. Math.

Remark 2.8: The requirement of G having polynomial growth in Theorem B

is important and cannot be easily dispensed with. If G is a group and g ∈ G,

denote by ad(g) ∈ Aut(G) the inner automorphism of G defined by ad(g)(x) =

gxg−1 for every x ∈ G. Now let G = F (a1, . . . , ak) and H = Inn(F ) ≤ Aut(F )

be the (non-amenable!) group of inner automorphisms of F with the generating

set T = {ad(a1), . . . , ad(ak)}. Then for any product φn of n elements of T we

have ||φn|| ≤ 2n+1. Since limn→∞(log 2n+1)/n = 0, we see that ν(H,T, S) = 0.

Nevertheless, in some instances quotient group considerations still imply that

ν(A) > 0 even if G does not have polynomial growth, or, equivalently, G is not

virtually nilpotent. A typical example is given by Corollary 2.9 below.

We obtain Corollary C from the Introduction:

Corollary 2.9: Let F be a free group of finite rank k > 1 and let H ≤ Aut(F )

be a finitely generated group of automorphisms of F such that the image H ′ of

H in Aut(Fab) ∼= GL(k,Z) is nonamenable. Then for any finite generating set

S of F and for any finite generating set T of H we have ν(H,T, S) > 0.

Proof: Let S′ be the image of S in the abelianization Zk = Fab of F . For any

φ ∈ Aut(F ) the automorphism φ of F factors through to an automorphism φ′

of Fab. Clearly ||φ||S ≥ ||φ′||S′ . Hence ν(H,T, S) ≥ ν(H ′, T ′, S′), where T ′ is

the image of T in Aut(Fab). Since Fab has polynomial growth, by Theorem B

we have ν(H ′, T ′, S′) > 0 and hence ν(H,T, S) > 0.

3. Frequencies and cyclic words

The following convention is fixed until the end of the paper unless specified

otherwise.

Convention 3.1: As before, let k ≥ 2 and let F = F (A) where A = {a1, . . . , ak}.
Let Â = A±1. We denote by CR the set of all cyclically reduced words in F .

A cyclic word is an equivalence class of nontrivial cyclically reduced words,

where two nontrivial cyclically reduced words are equivalent if they are cyclic

permutations of each other. If v is a cyclically reduced word, we denote by (v)

the cyclic word defined by v. Recall that if u is a freely reduced word, then |u|
denotes the length of u and |u| denotes the length of the cyclically reduced form

of u. If w = (v) is a cyclic word then ||w|| = ||v|| is the length of w.

Note that the set of cyclic words is naturally identified with the set of non-

trivial conjugacy classes of elements of F .
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Definition 3.2 (Frequencies): Let w be a cyclic word.

Let v be a nontrivial freely reduced word. We define nw(v), the number of

occurrences of v in w, as follows. Let w = (z). Take the smallest p > 0 such

that |zp−1| ≥ 2|v| and count the number of those i, 0 ≤ i < ||w|| such that

zp ≡ z1vz2 where |z1| = i. By definition this number is nw(v). If v = 1, we

define nw(1) := ||w||.
There is a more graphical way of defining nw(v) for a nontrivial cyclic word

w. We think of w as a cyclically reduced word written on a circle in a clockwise

direction without specifying a base-point. Then nw(v) is the number of positions

on the circle, starting from which it is possible to read the word v going clockwise

along the circle (and wrapping around more than once, if necessary).

For any freely reduced word v we define frequency of v in w as:

fw(v) :=
nw(v)

||w|| .

Also, if w is a nontrivial freely reduced word, and v is another nontrivial

freely reduced word, we define nw(v), the number of occurrences of v in w,

as follows. If |w| = n > 0 then by definition nw(v) is the number of those

i, 0 ≤ i < n for which w decomposes as a freely reduced product w = w′vw′′

with |w′| = i. Unlike the situation when w is a cyclic word, if |v| ≤ |w| then

necessarily nw(v) = 0.

Lemma 3.3: Let w be a nontrivial cyclic word. Then:

(1) For any m ≥ 0 and for any freely reduced word u with |u| = m we have

nw(u) =
∑

x∈ bA,|ux|=|u|+1

nw(ux) =
∑

x∈ bA,|xu|=|u|+1

nw(xu),

and

fw(u) =
∑

x∈ bA,|ux|=|u|+1

fw(ux) =
∑

x∈ bA,|xu|=|u|+1

fw(xu).

(2) For any m ≥ 1

∑

|u|=m

nw(u) = ||w|| and
∑

|u|=m

fw(u) = 1.

(3) For any s > 0 and any u ∈ F

nws(u) = snw(u) and fws(u) = fw(u).
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Proof: Parts (1) and (3) are obvious. We establish (2) by induction on m.

For m = 1 the statement is clear. Suppose that m > 1 and that (2) has been

established for m− 1.

We have

∑

|u|=m

nw(u) =
∑

|v|=m−1,x∈ bA:

|vx|=m

nw(vx) =
∑

|v|=m−1

nw(v) = ||w||,

as required.

Definition 3.4 (Nielsen automorphisms): A Nielsen automorphism of F is an

automorphism τ of one of the following types:

(1) There is some i, 1 ≤ i ≤ k such that τ(ai) = a−1
i and τ(aj) = aj for all

j 6= i.

(2) There are some 1 ≤ i < j ≤ k such that τ(ai) = aj, τ(aj) = ai and

τ(al) = al when l 6= i, l 6= j.

(3) There are some 1 ≤ i < j ≤ k such that τ(ai) = aiaj and τ(al) = al for

l 6= i.

It is a classical fact that the set of all Nielsen automorphisms generates

Aut(F ).

The following proposition proved by Kapovich in [30] is crucial for our argu-

ments.

Proposition 3.5: Let φ ∈ Out(F ) be an outer automorphism and let p ≥ 0

be such that φ can be represented, modulo Inn(F ), as a product of p Nielsen

automorphisms.

Then for any freely reduced word v ∈ F with |v| = m there exists a collection

of computable integers c(u, v) = c(u, v, φ) ≥ 0, where u ∈ F , |u| = 8pm, such

that for any nontrivial cyclic word w we have

nφ(w)(v) =
∑

|u|=8pm

c(u, v)nw(u).

Corollary 3.6: Let φ be an automorphism of F and let p be such that φ can

be written as a product of p Nielsen automorphisms.

There exists a collection of integers e(v) = e(v, φ) ≥ 0, where v ∈ F, |v| = 8p,

such that for any cyclic word w we have:

||φ(w)|| =
∑

|v|=8p

e(v)nw(v) and
||φ(w)||
||w|| =

∑

|v|=8p

e(v)fw(v).
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Moreover, there is an algorithm which, given φ and u, computes the numbers

e(v).

Proof: Since ||φ(w)|| =
∑

x∈ bA nφ(w)(x), the statement follows directly from

Proposition 3.5.

The following well-known fact is a version of the so-called “Bounded Cancel-

lation Lemma” (see [16]):

Lemma 3.7: Let α be an injective endomorphism of F . There is N = N(α) > 0

such that for any cyclically reduced word w the maximal terminal segment of

α(w) that cancels in the product α(w) · α(w) has length at most N .

4. Actions on trees

Let Γ be a finite connected graph with orientation EΓ = E+Γ ⊔ E−Γ. For

e ∈ E we use the following notation. The inverse edge of e is denoted by e, o(e)

denotes the initial vertex of e and t(e) denotes the terminal vertex of e.

Let F be a free group and let φ : F → π1(Γ, p) be an isomorphism between F

and the fundamental group of Γ with respect to a vertex p. Let T be a maximal

tree in Γ. For any vertex v, let [p, v]T denote the path in T from p to v. The

choice of T defines a basis ST of π1(Γ, p) as follows:

ST := {[p, o(e)]T e [t(e), p]T : e ∈ E+(Γ − T )}.

The φ-pullback of this basis BT := φ−1(ST ) is a basis of F referred to as the

geometric basis of F determined by T .

Let se := [p, o(e)]T e [t(e), p]T where e ∈ E(Γ − T ), so that sē = s−1
e . Let

be = φ−1(se), where e ∈ E(Γ − T ), so that again bē = b−1
e .

The following obvious lemma indicates the explicit correspondence between

freely reduced words in ST (or BT ) and reduced edge-paths in Γ.

Lemma 4.1:

(1) Let γ be an edge-path in Γ from p to p. Let u be a word in ST constructed

from γ as follows: delete all the edges of T from Γ and replace each edge

e ∈ E+(Γ − T ) in γ by se and each edge e ∈ E−(Γ − T ) in γ by s−1
ē .

Then u = γ in π1(Γ, p) and u is a reduced word in ST if and only if γ is a

reduced path.

(2) Let u be a word in ST ∪ S−1
T , where ǫi = ±1.

Construct the path γ from p to p as follows. First for each e ∈ E+(Γ−T )
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replace every se in u by e and replace every s−1
e by ē. Then between every

two consecutive e, e′ insert the path [t(e), o(e′)]T . Finally, append the

path [p, o(e)]T in front, for the first edge e0 ∈ E(Γ − T ) of the resulting

sequence, and append the path [t(e′0), p]T at the end for the last edge

e′0 ∈ E(Γ − T ) of the sequence.

Then γ is a path from p to p that is equal to u in π1(Γ, p) and that is

reduced if and only if the word u over ST is reduced.

(3) Let γ be a closed edge-path in Γ. Let u be a word in S±1
T obtained from

γ as in (1). Then the loop at p corresponding to u in π1(Γ, p) is freely

homotopic to γ in Γ and the word u is cyclically reduced if and only if the

path γ is cyclically reduced.

(4) Let w be a cyclic word in S±1
T . Let γ be a circuit in Γ obtained as follows.

Replace each occurrence of se in w by e and each occurrence of s−1
e by ē;

after that, between each two consecutive (in the cyclic order) edges e, e′

insert the path [t(e), o(e′)]T . Then w and γ represent freely homotopic

loops in Γ and the cyclic word w is reduced if and only if the circuit γ is

reduced.

Now suppose that Γ is endowed with the structure of a metric graph, that is,

each edge e of Γ is assigned a length ℓ(e) > 0 in such a way that ℓ(e) = ℓ(ē)

for each edge e. Let X = (̂Γ, p) be the universal cover of Γ. Then X inherits

the structure of a metric tree with an isometric action of π1(Γ, p) and, via φ, an

action of F on X .

Let p̃ be a lift of p to X . For g ∈ π1(Γ, p) let |g|p := dX(p̃, gp̃). Also denote by

||g||X the translation length of g when acting onX . Similarly, if w is a conjugacy

class (or a cyclic word) in π1(Γ, p), we denote by ||w||X the translation length of

u with respect toX . For each freely reduced word z = sǫ
es

δ
e′ of length two in S±1

T ,

where ǫ, δ ∈ {1,−1}, denote by rz the length of the edge-path [t(eǫ), o(e′
δ
)]T in

Γ. Let Z be the set of all freely reduced words of length two in ST . For each

a = se ∈ ST denote e(a) := and e(a−1) := ē.

Lemma 4.2:

(1) Let w be a reduced cyclic word in S±1
T . Then

||w||X =
∑

a∈S±1

T

ℓ(e(a))nw(a) +
∑

z∈Z

rznw(z).

(2) Let u be a freely reduced word in ST . Then

|u|p =
∑

a∈S±1

T

ℓ(e(a))nu(a) +
∑

z∈Z

rznu(z) + ℓ([p, o(e)]T ) + ℓ([t(e′), p]T )
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where e and e′ are the last and the first edges of γ(u) accordingly.

The following is Theorem D from the Introduction:

Theorem 4.3: Let F = F (a1, . . . , ak), where k ≥ 2, and let A = {a1, . . . , ak}.
Then for any free action φ of F on a simplicial tree X without inversions the

generic stretching factor λ(φ) = λA(φ) is a rational number with

2kλ(φ) ∈ Z[ 1

2k − 1

]
.

Moreover, if X is given as the universal cover of a finite connected simplicial

graph Γ and if the action φ is given via an explicit isomorphism between F and

π1(Γ, p), then λ(φ) is algorithmically computable in terms of φ.

Proof: Recall that the definition of λ(φ, | · |x) does not depend on the choice

of a point x ∈ X . Hence we may assume that x is a vertex of the minimal

F -invariant subtree of X , and therefore, that the action of F on X is minimal.

Let Γ = X/F be the finite quotient graph. Choose an orientation on Γ, a

maximal tree T in Γ. Choose a base-vertex p in Γ to be the image of x ∈ X

in Γ. Note that in both X and Γ every edge has length 1. Then there is a

canonical isomorphism ψ: F → π1(Γ, p). Let ST and BT be the geometric bases

corresponding to T for π1(Γ, p) and F accordingly.

Fix a bijection between BT and A = {a1, . . . , ak} and an automorphism α of

F induced by this bijection of the two free bases of F .

Let g = x1 · · ·xn ∈ F be a freely reduced word of length n in F (a1, . . . , ak).

Let g′ be a cyclically reduced word of length n over A obtained from g by

changing the last letter of g if necessary. Thus |g′g−1|A ≤ 2.

Let w′ be the cyclic word over A defined by g′. Let w be the result of rewriting

w′ as the cyclic word in BT . Then there is an integer M ≥ 1 such that for each

freely reduced word z in BT of length at most 2,

nw(z) =
∑

|u|A=M

c(u, z)nw(u)

where c(u, z) ≥ 0 are some integers independent of w. Let Zi be the set of freely

reduced words of length i in BT , for i = 1, 2.

Then

||g′||X = ||w||X =
∑

a∈Z1

ℓ(e(a))nw(a) +
∑

z∈Z2

rznw(z)

=
∑

a∈Z1

∑

|u|A=M

ℓ(a)c(u, a)nw′(u) +
∑

z∈Z2

∑

|u|A=M

rzc(u, z)nw′(u),
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It follows from Lemma 4.1 and Lemma 4.2 that if h ∈ F is cyclically reduced

over BT then |||h||X − |h|x| ≤ N , where N = N(x) > 0 is some constant

independent of h. On the other hand, by the Bounded Cancellation Lemma

(Lemma 3.7) there exists a constant N ′ > 0 such that for any cyclically reduced

word y over A, we have |||y||BT
− |y|BT

| ≤ N ′. By construction g′ is cyclically

reduced over A and |g′g−1|A ≤ 2. Hence there exists a constant L > 0 such that

for every g as above and each u ∈ F with |u|A = M we have ||g|x − ||g′||X | ≤ L

and |ng(u) − nw′(u)| ≤ L.

Therefore, there is another constant L′ > 0 independent of f such that for

every freely reduced word g of length n over A

(∗).
∣∣∣∣

∑

a∈Z1

∑

|u|A=M

ℓ(e(a))c(u, a)fg(u) +
∑

z∈Z2

∑

|u|A=M

rzc(u, z)fg(u) −
|g|p
n

∣∣∣∣ ≤
L′

n

If gn is a freely reduced word of length n obtained by a non-backtracking

simple random walk of length n on F (a1, . . . , ak), then for each u ∈ F (a1, . . . , ak)

with |u|A = M we have

lim
n→∞

fgn
(u) =

1

2k(2k − 1)M−1
almost surely.

Therefore (∗) implies that

(∗∗)
λ(φ) =

1

2k(2k − 1)M−1

[ ∑

a∈Z1

∑

|u|A=M

ℓ(e(a))c(u, a) +
∑

z∈Z2

∑

|u|A=M

rzc(u, z)

]
.

Since ℓ(e(a)) = 1, c(u, a), c(u, z) and rz are integers, it follows that λ(φ) is

rational and, moreover, that

2kλ(φ) ∈ Z[ 1

2k − 1

]
.

Moreover, λ(φ) is computable in terms of an explicit isomorphism between F

and π1(Γ, p).

Remark 4.4: The formula (∗∗) for λ(φ) holds for an arbitrary structure of a

metric graph on Γ, where the lengths of edges are allowed to be arbitrary positive

real numbers and not necessarily 1. If the lengths of all edges of Γ are rational,

then by (∗∗) λ(φ) is also rational. Moreover, if these length of the edges are

given to us in some algorithmically describable form then λ(φ) is computable

in terms of these lengths and of an an explicit isomorphism between F and

π1(Γ, p).
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5. Genericity

Convention 5.1: Recall that CR denotes the set of all cyclically reduced words

in F = F (a1, . . . , ak). If S ⊆ F and n ≥ 0 we denote

ρ(n, S) := #{w ∈ S : |w| ≤ n} and γ(n, S) := #{w ∈ S : |w| = n}.

Let Pn be the uniform discrete probability measure on the set of all elements

w ∈ F with |w| = n. We extend Pn to F by setting Pn(w) = 0 for any w ∈ F

with |w| 6= n.

Similarly, let P ′
n be the uniform discrete probability measure on the set of

all cyclically reduced elements w ∈ F with ||w|| = n. We extend Pn to CR by

setting P ′
n(w) = 0 for any w ∈ CR with ||w|| 6= n.

Thus γ(n, F ) = 2k(2k − 1)n−1 for n > 0.

For a number sequence xn with limn→∞ xn = x ∈ R we say that the conver-

gence is exponentially fast if there exist 0 < σ < 1 and D > 0 such that for all

n ≥ 1 we have |xn − x| ≤ Dσn.

Definition 5.2 (Genericity): Let S ⊆ W ⊆ F . We say that S is exponentially

W-generic if

lim
n→∞

γ(n, S)

γ(n,W)
= 1

and the convergence is exponentially fast. The complement in W of an expo-

nentially W-generic set is called exponentially W-negligible.

In practice we are only interested in the cases W = F and W = CR, the

set of all cyclically reduced words in F . By definition S ⊆ F is exponentially

F -generic if and only if limn→∞ Pn(S) = 1 with exponentially fast convergence

in this limit. Similarly S ⊆ CR is exponentially CR-generic if and only if

limn→∞ P ′
n(S) = 1 with exponentially fast convergence. Here there is a simple

criterion of being exponentially negligible [36] in F and CR:

Lemma 5.3: Let W = F or W = CR. Then for a subset S ⊆ W the following

are equivalent:

(1) The set S is exponentially W-negligible.

(2) We have
γ(n, S)

(2k − 1)n
→n→∞ 0 exponentially fast.

(3) We have
ρ(n, S)

(2k − 1)n
→n→∞ 0 exponentially fast.
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(4) We have

lim sup
n→∞

n
√
ρ(n, S) < 2k − 1.

(5) We have

lim sup
n→∞

n
√
γ(n, S) < 2k − 1.

Proposition 5.4: Let ǫ > 0 and let m > 0 be an integer. Then the set

W (m, ǫ) :=
{
w ∈ F : for any u 6= 1 with |u| = m

we have |fw(u) − 1

2k(2k − 1)m−1
| < ǫ

}

is exponentially F -generic.

Proof: This is a straightforward corollary of Large Deviation Theory [18] ap-

plied to the finite state Markov chain generating the freely reduced words in F .

We refer the reader to [36] for a more detailed discussion about large Deviation

Theory and how it works in this particular case.

It is not hard to deduce the following from Proposition 5.4.

Proposition 5.5: Let ǫ > 0 and let m > 0 be an integer. Then the set

C(m, ǫ) :=
{
w ∈ CR: for any u 6= 1 with |u| = m and for the cyclic word (w)

we have |f(w)(u) −
1

2k(2k − 1)m−1
| < ǫ

}

is exponentially CR-generic.

We now give the definition of an “approximate” stretching factor, which will

later be seen to be equivalent to the generic stretching factor of an automorphism

introduced earlier.

Definition 5.6: Let φ: F → Aut(X) be a free simplicial action without inver-

sions of F = F (a1, . . . , ak) on a simplicial tree X .

We say that a number λ ≥ 0 is a approximate stretching factor of φ if for

every p ∈ X and for any ǫ > 0 the set

{
w ∈ F : | |w|p|w| − λ| ≤ ǫ

}

is exponentially generic in F .

Similarly, we say that a number λ ≥ 0 is a approximate conjugacy stretching

factor of φ if for any ǫ > 0 the set
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{
w ∈ CR : | ||w||X||w|| − λ| ≤ ǫ

}

is exponentially generic in CR.

Proposition 5.7: Let φ: F → Aut(X) be a free simplicial action of F =

F (a1, . . . , ak) on a simplicial tree X .

(1) There is at most one approximate stretching factor for φ.

(2) There is at most one approximate conjugacy stretching factor for φ.

(3) If λ is an approximate conjugacy stretching factor for φ then λ is also an

approximate stretching factor for φ.

(4) If λ is an approximate stretching factor for φ then λ is also an approximate

conjugacy stretching factor for φ.

Proof: Parts (1) and (2) are obvious.

We now establish (3). Indeed, suppose that λ is an approximate conjugacy

stretching factor for φ. Let ǫ > 0 and let S be the set of all cyclically reduced

words w such that ∣∣ ||w||X
||w|| − λ

∣∣ ≥ ǫ/2.

Then S is exponentially CR-negligible, so that

(γ(n, S))/(2k − 1)n →n→∞ 0

exponentially fast. Let p ∈ X . Put M = max{|ai|p : 1 ≤ i ≤ k}. Let N > 0 be

an integer such that for any cyclically reduced word u we have ||u|p−||u||X | ≤ N .

Let S′ be the set of all freely reduced words w in F that differ from an

element of S in at most the last letter. Then γ(n, S′) ≤ 2kγ(n, S) and hence S′

is exponentially F -negligible by Lemma 5.3.

Suppose w ∈ F − S′ is such that (N + 2M)/|w| < ǫ/2. Let u be a cyclically

reduced word obtained from w by changing at most the last letter. Then |u| =

|w| and u ∈ CR− S.

Thus dA(w, u) ≤ 2 and hence dX(wp, up) ≤ 2M . Thus ||u|p − |w|p| ≤ 2M .

Also |||u||X −|u|p| ≤ N . Therefore |||u||X −|w|p| ≤ N +2M . Since u ∈ CR−S,

we have |||u||X − λ||u||| < ǫ||u||. Since ||u|| = |u| = |w|, we have

||w|p − λ|w|| < ǫ|w| +N + 2M,
∣∣∣
|w|p
|w| − λ

∣∣∣ <
ǫ

2
+
N + 2M

|w| < ǫ.

The set {w ∈ F : (N + 2M)/|w| ≥ ǫ/2} is finite. Hence S′ ∪ {w ∈ F :

(N + 2M)/|w| ≥ ǫ/2} is exponentially F -negligible and assertion (3) holds.
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The proof of (4) is similar to that of (3) and we leave the details to the reader.

Theorem 5.8: Let F = F (a1, . . . , ak) and let φ : F → Aut(X) be a free

simplicial action of F = F (a1, . . . , ak) on a simplicial tree X .

Then the generic stretching factor λ(φ) is also an approximate conjugacy

stretching factor (and thus by Proposition 5.7 an approximate stretching factor).

Proof: The proof is very similar to that of Theorem 4.3. Since the minimal

F -invariant subtree of X contains the axes of all the nontrivial elements of F ,

we may again assume that the action of F on X is minimal.

Choose a vertex x ∈ X . Recall, that, using the notation from the proof of

Theorem 4.3, for any w ∈ F
∣∣∣

∑

a∈Z1

∑

|u|A=M

c(u, a)fw(u) +
∑

z∈Z2

∑

|u|A=M

rzc(u, z)fw(u) − (|g|p/n)
∣∣∣ ≤ (L′/n).

It follows from Lemma 4.1 and Lemma 4.2 that if w ∈ F is cyclically reduced

over BT then |||w||X − |w|x| ≤ N , where N = N(x) > 0 is some constant

independent of w. On the other hand, by the Bounded Cancellation Lemma

(Lemma 3.7) there exists a constant N ′ > 0 such that for any cyclically reduced

word w over A, we have |||w||BT
−|w|BT

| ≤ N ′. Hence for any cyclically reduced

word w over A we have |||w||X − |w|x| ≤ N ′′ where N ′′ = N ′′(x) > 0 is some

constant independent of w.

Therefore, for any cyclically reduced w ∈ F over A with ||w|| = n

(†)
∣∣∣∣

∑

a∈Z1

∑

|u|A=M

c(u, a)fw(u)+
∑

z∈Z2

∑

|u|A=M

rzc(u, z)fw(u)− ||w||X
n

∣∣∣∣ ≤
L′ +N

n
.

Let ǫ > 0. We know that the set

C(M, ǫ) :=
{
w ∈ CR: for any u 6= 1 with |u| = M and for the cyclic word (w)

we have
∣∣∣f(w)(u) −

1

2k(2k − 1)M−1

∣∣∣ < ǫ
}

is exponentially CR-generic.

Hence (†) implies that for any w ∈ C(M, ǫ)
∣∣∣∣

1

2k(2k − 1)M−1

( ∑

a∈Z1

∑

|u|A=M

c(u, a) +
∑

z∈Z2

∑

|u|A=M

rzc(u, z)

)
− ||w||X

n

∣∣∣∣

≤ N1

n
+N1ǫ

for some constant N1 > 0 independent of w and ǫ.
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Thus by definition the number

1

2k(2k − 1)M−1

( ∑

a∈Z1

∑

|u|A=M

c(u, a) +
∑

z∈Z2

∑

|u|A=M

rzc(u, z)

)

is an approximate conjugacy stretching factor for φ. In the proof of Theorem 4.3

we obtained the same formula for λ(φ).

Lemma 5.9: Let F = F (a1, . . . , ak) and let φ: F → Aut(X) be a free simplicial

action of F = F (a1, . . . , ak) on a simplicial tree X . Let µ ≥ 0.

Suppose there exists an exponentially CR-generic set S such that for any

w ∈ S
||w||X
||w|| ≥ µ.

Then λ(φ) ≥ µ.

Proof: Suppose, on the contrary, that λ(φ) < µ. Choose ǫ > 0 such that

λ(φ) + ǫ < µ.

Then there is an exponentially CR-generic set R of cyclically reduced words

such that for any w ∈ R
||w||X
||w|| ≤ λ+ ǫ.

The intersection S ∩R is exponentially CR-generic and hence nonempty. Take

w ∈ S ∩R.

Then

µ ≤ ||w||X
||w|| ≤ λ+ ǫ < µ,

yielding a contradiction.

6. Whitehead’s Peak Reduction and rigidity of free group auto-

morphisms

We need to recall some definitions related to Whitehead’s algorithm for solving

the automorphic equivalence problem in a free group. We refer the reader to [39,

44] for a detailed exposition.

Definition 6.1 (Whitehead automorphisms): A Whitehead automorphism of F

is an automorphism τ of F of one of the following two types:

(1) There is a permutation t of Â such that τ | bA = t. In this case τ is called

a relabeling automorphism or a Whitehead automorphism of the first kind.



30 V. KAIMANOVICH, I. KAPOVICH AND P. SCHUPP Isr. J. Math.

(2) There is an element a ∈ Â, the multiplier, such that for any x ∈ Â

τ(x) ∈ {x, xa, a−1x, a−1xa}.

In this case we say that τ is a Whitehead automorphism of the second kind.

(Note that we always have τ(a) = a in this case since τ is an automorphism

of F .) To every such τ we associate a pair (S, a) where a is as above and S

consists of all those elements of Â, including a but excluding a−1, such that

τ(x) ∈ {xa, a−1xa}. We will say that (S, a) is the characteristic pair of τ .

Note that for any a ∈ Â the inner automorphism ad(a) is a Whitehead auto-

morphism of the second kind.

The following important result of Whitehead is known as the “peak reduction

lemma”:

Proposition 6.2: Let u, v be cyclic words with ||u|| ≤ ||v|| and let φ ∈ Aut(F )

be such that φ(u) = v. Then we can write φ as a product of Whitehead moves

φ = τp · · · τ1

so that for each i = 1, . . . , p

||τi · · · τ1(u)|| ≤ ||v||.

Moreover, if ||u|| < ||v|| then the above inequalities are strict for all i < p.

Definition 6.3 (Weighted Whitehead graph): Let w be a nontrivial cyclically

reduced word in Â∗. The weighted Whitehead graph Γw of w is defined as follows.

Let (w) be the cyclic word defined by w. The vertex set of Γw is Â. For every

x, y ∈ Â such that x 6= y−1 there is an undirected edge in Γw from x−1 to y

labeled by the sum n̂w(xy) := n(w)(xy) + n(w)(y
−1x−1).

There are k(2k − 1) undirected edges in Γw. Edges may have label zero, but

there are no edges from a to a for a ∈ Â. It is easy to see that we have Γw = Γv

for any cyclic permutation v of w or w−1.

Convention 6.4: Let w be a fixed nontrivial cyclically reduced word. For two

subsets X,Y ⊆ Â we denote by X.Y the sum of all edge-labels in the weighted

Whitehead graph Γw of w of edges from elements of X to elements of Y . Thus

for x ∈ Â the number x.Â is equal to nw(x) + nw(x−1), the total number of

occurrences of x±1 in w.
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The next lemma, which is Proposition 4.16 of Ch. I in [39], gives an explicit

formula for the difference of the lengths of w and τ(w), where τ is a Whitehead

automorphism.

Lemma 6.5: Let w be a nontrivial cyclically reduced word and let τ be a White-

head automorphism of the second kind with the characteristic pair (S, a). Let

S′ = Â− S. Then

||τ(w)|| − ||w|| = S.S′ − a.Â.

The following important notion was introduced by Kapovich, Schupp and

Shpilrain in [36].

Definition 6.6 (Strict Minimality): A nontrivial cyclically reduced word w in

F is strictly minimal if for every non-inner Whitehead automorphism τ of F of

the second kind we have

||τ(w)|| > ||w||.

The set of all strictly minimal elements in F is denoted SM .

An immediate consequence of the Peak Reduction Lemma is:

Proposition 6.7 ([36]): Let w ∈ F be a cyclically reduced strictly minimal

element. Then w is of minimal length in its Aut(F )-orbit and for any φ ∈ Aut(F )

we have

|w| = ||w|| ≤ ||φ(w)|| ≤ |φ(w)|.

Theorem 6.8: Put c0 := 1+(2k−3)/(4k2−2k). There exists an exponentially

F -generic set W ⊆ F with the following property.

For any φ ∈ Aut(F ) the following conditions are equivalent:

(1) The automorphism φ is simple.

(2) We have λ(φ) = 1.

(3) We have λ(φ) < 1 + (2k − 3)/(2k2 − k).

(4) For some w ∈ W we have ||φ(w)|| = ||w||.
(5) For every w ∈W we have ||φ(w)|| = ||w||.
(6) For some w ∈ W we have ||φ(w)|| ≤ c0||w||.
(7) For every w ∈W we have ||φ(w)|| ≤ c0||w||.

Proof: It is obvious that (1) implies (2) and that (2) implies (3).

We will now prove that (3) implies (1).

Let φ ∈ Aut(F ).

Let ǫ > 0 be arbitrary. Put T (ǫ) be the set of all cyclically reduced words w

such that:



32 V. KAIMANOVICH, I. KAPOVICH AND P. SCHUPP Isr. J. Math.

(1) For any x ∈ Â |fw(x) − 1/2k| ≤ ǫ/2.

(2) For any x, y ∈ Â with x 6= y−1 |fw(xy) − 1/(2k(2k − 1))| ≤ ǫ/2.

Then T (ǫ) is exponentially CR-generic [36]. Moreover, every w ∈ T (ǫ) is

strictly minimal [36], provided that ǫ < (2k − 3)/(k(2k − 1)(4k − 3)).

Suppose now that ǫ < ǫ0 := (2k−3)/(k(2k−1)(4k−3)). Choose an arbitrary

element w ∈ T (ǫ) and denote n = ||w||.
By strict minimality of w we have ||w|| ≤ ||φ(w)||. Moreover, by Proposi-

tion 6.2 (Peak Reduction Lemma) there is a decomposition φ = τpτp−1 · · · τ1
such that each τi is a Whitehead move and for each i = 1, . . . , p− 1

||τiτi−1 · · · τ1(w)|| ≤ ||φ(w)||

with strict inequalities unless ||w|| = ||φ(w)||.
Suppose first that ||w|| = ||φ(w)||. Then all inequalities above are equali-

ties and by strict minimality of w each τi is either inner or a relabeling auto-

morphism. This implies that φ = ατ where α is inner and τ is a relabeling

automorphism and that λ(φ) = 1.

Suppose now that ||w|| < ||φ(w)||. Then the preceding argument shows that

in fact for any z ∈ T (ǫ) we have ||z|| < ||φ(z)|| (since otherwise φ would be

simple and so ||w|| = ||φ(w)||).
Denote z0 = z and zi = τiτi−1 · · · τ1(z) for 0 < i ≤ p. Thus zp = φ(z). Since

||z|| < ||φ(z)||, there is some i, 1 ≤ i ≤ p such that τi is a non-inner Whitehead

move of the second kind. Let j be the smallest i with this property. Then all

τi with i < j are either inner or relabeling automorphisms, ||z|| = ||zi|| and

zi ∈ T (ǫ). In particular, zj−1 ∈ T (ǫ) and zj−1 is strictly minimal.

Thus

n = ||z|| = ||zj−1|| ≤ ||zj || = ||τj(zj−1)|| < ||φ(z)||.
Let (S, a) be the characteristic pair of τj and let S′ = Â − S. Since τj is

non-inner, we have both |S| ≥ 2 and |S′| ≥ 2. Hence |S|| S′| ≥ 2(2k − 2) and

there are at least 2(2k− 2) edges between S and S′ in the weighted Whitehead

graph of zj−1. Recall that a.Â is the total number of occurrences of a±1 in z.

By Lemma 6.5, we have ||τj(zj−1)|| − ||z|| = S.S′ − a.Â.

By assumption on zj−1 we have a.Â ≤ n(1/k + ǫ) and so

||τj(zj−1)|| − ||zj−1|| = S.S′ − a.Â ≥ 2n(2k − 2)
( 1

k(2k − 1)
− ǫ

)
− n

(1

k
+ ǫ

)
.

Hence

||φ(z)|| ≥ ||zj|| ≥ n+ 2n(2k − 2)
( 1

k(2k − 1)
− ǫ

)
− n

(1

k
+ ǫ

)
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and so, since n = ||z||,

||φ(z)||
||z|| ≥ 1 + (4k − 4)

( 1

k(2k − 1)
− ǫ

)
−

(1

k
+ ǫ

)
.

Note that the above inequality holds for any element z ∈ T (ǫ).

Since T (ǫ) is exponentially CR-generic, this implies by Lemma 5.9 that

λ(φ) ≥ 1 + (4k − 4)
( 1

k(2k − 1)
− ǫ

)
−

(1

k
+ ǫ

)
.

Since 0 < ǫ < ǫ0 was arbitrary, it follows that

λ(φ) ≥ 1 + (4k − 4)
1

k(2k − 1)
− 1

k
= 1 +

2k − 3

2k2 − k
> 1.

This proves that (3) implies (1), so that (1), (2) and (3) are equivalent.

Choose 0 < ǫ1 < ǫ0 such that

1 + (4k − 4)
( 1

k(2k − 1)
− ǫ1

)
−

(1

k
+ ǫ1

)
< c0 = 1 +

2k − 3

4k2 − 2k
.

Put W = T (ǫ1). The above argument shows that if for some w ∈ W we have

||φ(z)||
||z|| < 1 + (4k − 4)

( 1

k(2k − 1)
− ǫ1

)
−

(1

k
+ ǫ1

)

then φ is simple.

With this W we have proved that (5) implies (1). It is obvious that (1) implies

(4)–(7) and that each of (4), (5), (7) implies (6). Thus statements (1), (4), (5),

(6), (7) are equivalent.

We already know that (1), (2) and (3) are equivalent. This completes the

proof of the theorem.

The following statement, together with Theorem 6.8, implies Theorem F from

the Introduction.

Corollary 6.9: Let F = F (a1, . . . , ak), where k ≥ 2, and d be the word metric

on F corresponding to the generating set A = {a1, . . . , ak}. Let φ ∈ Aut(F ).

Then the following conditions are equivalent:

(1) The automorphism φ is simple.

(2) The map φ: (F, d) → (F, d) is a rough isometry.

(3) The map φ: (F, d) → (F, d) is a rough similarity.

Proof: It is obvious that (1) implies (2) and that (2) implies (3).
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We will now show that (3) implies (1). Suppose that φ is a rough similarity,

so that there exist λ > 0 and D > 0 such that for any w ∈ F

λ|w| −D ≤ |φ(w)| ≤ λ|w| +D.

Then obviously λ = λ(φ). By Theorem 6.8 either φ is simple or λ(φ) > 1.

Assume the latter. Put λ0 = (1 + λ)/2. Thus 1 < λ0 < λ.

Consider the ball Bn of radius n in F , where n >> 1. For any w ∈ F with

|w| ≥ n/λ0 we have

|φ(w)| ≥ λ|w| −D ≥ λn/λ0 −D > n,

so that φ(w) 6∈ Bn.

Thus only the elements of length ≤ n/λ0 may be potentially taken to Bn by φ.

The number of such elements is smaller than #Bn since λ0 > 1 and n/λ0 < n.

This contradicts the fact that φ: (F, d) → (F, d) is a bijection. Therefore φ is

simple, as required.

The following is Theorem G from the Introduction:

Theorem 6.10: Let F = F (a1, . . . , ak) where k ≥ 2. Let φ: F → X be a free

minimal action on F on a simplicial tree X without inversions.

Then exactly one of the following occurs:

(1) There is a simple automorphism α of F such that X is φ ◦α-equivariantly

isomorphic to the Cayley graph of F with respect to {a1, . . . , ak}. In this

case λ(φ) = 1.

(2) We have λ(φ) ≥ 1 + 1/k(2k − 1).

Proof: Let Γ = X/F and let T be a maximal tree in Γ and let B = {b1, . . . , bk}
be the geometric basis of F corresponding to T . Let ψ ∈ Aut(F ) be defined by

α(bi) = ai for i = 1, . . . , k.

Note that because of Lemma 4.2 for any cyclic word w overB we have ||w||X ≥
||w||B . Suppose first that α is not a simple automorphism. Then λ(α) ≥
1 + (2k − 3)/k(2k − 1).

Hence for every ǫ > 0 there exists an exponentially CR-generic set R(ǫ) ⊆ CR
such that for any w ∈ R(ǫ)

||w||B
||w||A

=
||α(w)||A
||w||A

≥ 1 +
2k − 3

k(2k − 1)
− ǫ.

Since ||w||X ≥ ||w||B , it follows that

||w||X
||w||A

≥ 1 +
2k − 3

k(2k − 1)
− ǫ.
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Since ǫ > 0 was arbitrary, it follows by Lemma 5.9 that

λ(φ) ≥ 1 +
2k − 3

k(2k − 1)
≥ 1 +

1

k(2k − 1)
,

as required.

Suppose now that α is a simple automorphism. We will assume that α = Id,

and it will be easily seen that the general case is similar.

If Γ is a wedge of k loop-edges then the statement of the theorem holds.

Suppose Γ is not of this form. Then there exist edges e, e′ ∈ E(Γ−T ), e′ 6= e−1,

such that [t(e), o(e′)]T has length at least 1. Let z be the freely reduced word

of length 2 in B corresponding to the sequence ee′. Let ǫ > 0 be arbitrary. Let

C(2, ǫ/2) ⊆ CR be defined as in Proposition 5.5. Thus C(2, ǫ/2) consists of all

cyclically reduced words w′ such that for the cyclic word w = (w′) and for every

freely reduced word xy in A

|fw(xy) − 1

2k(2k − 1)
| ≤ ǫ/2.

Then C(2, ǫ/2) is exponentially CR-generic. Let w′ ∈ C(2, ǫ/2) be arbitrary and

let w = (w′). Note that ||w′||A = ||w′||B = ||w||A = ||w||B and ||w||X = ||w′||X .

Then

||w||X ≥ ||w||B + nw(z) + nw(z−1) = ||w||A + nw(z) + nw(z−1)

and so

||w′||X
||w′||A

=
||w||X
||w||A

≥ 1 + fw(z) + fw(z−1) ≥ 1 +
1

k(2k − 1)
− ǫ.

Since ǫ > 0 was arbitrary, Lemma 5.9 implies that λ(φ) ≥ 1 + 1/k(2k − 1), as

required.

7. Application to the geometry of automorphisms

Definition 7.1: Let F = F (a1, . . . , ak). An automorphism φ of F is said to be

(s,m)-hyperbolic, where s > 1 and m ≥ 1 is an integer, if for every nontrivial

cyclic word w we have

s||w|| ≤ max{||φm(w)||, ||φ−m(w)||}.

An automorphism is hyperbolic if it is (s,m)-hyperbolic for some s > 1,m ≥ 1.

The following lemma is an easy consequence of the above definition:
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Lemma 7.2: Let φ ∈ Aut(F ) be (s,m)-hyperbolic and let w be a cyclic word

of minimal length in its 〈φ〉-orbit. Then for any n ≥ 2 we have

||φmn(w)|| ≥ sn−1||w||.

Proof:

By definition of hyperbolicity of φ we have

(‡). ||φ−m(u)|| ≤ ||u|| ⇒ s||u|| ≤ ||φm(u)||

Note that by the choice of w we have ||w|| ≤ ||φm(w)||. Hence applying (‡)
with u = φm(w) we get s||φm(w)|| ≤ ||φ2m(w)||. Then, using (‡), by induction

on n we see that for any n ≥ 1

||φm(n+1)(w)|| = ||φmn+m(w)|| ≥ s||φm(w)||.

This in turn implies that for any n ≥ 1

||φm(n+1)(w)|| = ||φmn+m(w)|| ≥ sn||φm(w)|| ≥ sn−1||w||.

This proves Lemma 7.2.

The following is Theorem E from the Introduction:

Theorem 7.3: Let φ be an (s,m)-hyperbolic automorphism of F . Then

lim inf
n→∞

n
√
λ(φn) ≥ m

√
s > 1.

Proof: Let t ≥ 2 be an arbitrary integer. Let w ∈ SM be a strictly minimal

element. Since w is minimal in its Aut(F )-orbit, it is also minimal in its 〈φ〉-
orbit. Therefore by Lemma 7.2

||φtm(w)|| ≥ st−1||w|| and
||φtm(w)||

||w|| ≥ st−1.

Since SM is exponentially CR-generic, Lemma 5.9 implies that λ(φtm) ≥ st−1.

Moreover, there is D > 0 such that for any cyclically reduced word u we have

||φi(u)|| ≥ D||u||, for all 0 ≤ i < m.

Let n ≥ 2m be an integer. Then we can write n as n = mt + i where t ≥ 2

and 0 ≤ i < m. For any w ∈ SM we have

||φn(w)|| = ||φmt+i(w)|| ≥ D||φmt(w)|| ≥ Dst−1||w||
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and hence
||φtm(w)||

||w|| ≥ Dst−1.

Since SM is exponentially CR-generic, Lemma 5.9 again implies that for any

n ≥ 2m

λ(φn) ≥ Dst−1 =
D

s
s⌊n/m⌋.

This implies

lim inf
n→∞

n
√
λ(φn) ≥ s1/m > 1,

as claimed.

We can now prove Corollary I from the Introduction:

Corollary 7.4: Let F = F (a1, . . . , ak) be a free group of rank k ≥ 2, equipped

with the standard metric.

Then for any φ ∈ Aut(F ) we have

flux(φ) =

{
0, if φ is a relabeling automorphism,
1, otherwise.

Proof: Let λ = λ(φ) be the generic stretching factor.

Suppose first that λ > 1. Then the set

T :=
{
w ∈ F :

|φ(w)|
|w| >

λ+ 1

2

}

is exponentially F -generic.

Let B(n) be the ball of radius n in F and let w ∈ B(n) ∩ T be such that

2n/(λ+ 1) ≤ |w| ≤ n. Then

|φ(w)| > |w|λ + 1

2
≥ 2n

λ+ 1

λ+ 1

2
= n.

Hence for each w ∈ [B(n)∩ T ]−B(2n/(λ+ 1)) we have |φ(w)| > n. The size of

B(2n/(λ + 1)) is exponentially smaller than that of B(n) since 2/(λ + 1) < 1.

Hence by exponential genericity of T

#[B(n) ∩ T ] − #B(2n/(λ+ 1))

#B(n)
−→n→∞ 1 exponentially fast.

Hence

lim
n→∞

fluxφ(n)

#B(n)
= 1

and therefore flux(φ) = 1.



38 V. KAIMANOVICH, I. KAPOVICH AND P. SCHUPP Isr. J. Math.

Suppose now that λ(φ) = 1. By Theorem 6.8 this implies that φ = ατ where

α is inner and τ is a relabeling automorphism.

If α = 1, then obviously flux(φ) = 0. Suppose now that α is nontrivial.

Since τ acts as a permutation on each ball and each sphere in F , we can assume

that τ = 1 and φ = α. Thus there is u ∈ F, u 6= 1 such that for every w ∈ F ,

φ(w) = uwu−1. There are ≥ c1(2k − 1)n elements f with |w| = n such that

the product uwu−1 is freely reduced as written, where c1 > 0 is a constant

independent of n and u. For each such element we have |φ(w)| > |w|. Hence

there is a constant c2 ∈ (0, 1) independent of n and u such that for any n > 0

1 ≥ fluxφ(n)

#B(n)
≥ c2 > 0.

Hence

1 ≥ flux(φ) = lim
n→∞

n

√
fluxφ(n)

#B(n)
≥ lim

n→∞

n
√
c2 = 1.

Thus flux(φ) = 1 and the proof is complete.

8. Random elements in regular languages

The most reasonable way of choosing a “random” element in the regular lan-

guage L is via a random walk in the transition graph of an automaton M

accepting L. It turns out that the natural model of computation here is that

of a non-deterministic finite automaton or NDFA. Such an automaton M over

an alphabet A with state set Q is specified by a finite directed graph Γ(M).

The vertex set of Γ(M) is the set Q of states of M and Q comes equipped

with a distinguished nonempty subset I of initial or start states. The directed

edges of Γ(M) are labelled by elements of A and these edges are treated as

transitions of M . If q ∈ Q is a state and a ∈ A is a letter, we allow multiple

edges labelled a with origin q and we also allow the case when there are no such

edges. Nondeterministic automata are thus by their nature “partial”. There is

a distinguished subset of Q of accepting states. A word w over A is said to be

accepted by M if there exists a directed path with label w in Γ(M) from some

initial state to an accepting state. The language, L(M), accepted by M is the

collection of all words accepted by M .

We will also use directed graph Γ1(M) defined as follows. The vertex set of

Γ1(M) is the set of directed edges E(Γ(M)) of M . If e1, e2 ∈ E(Γ(M)) the pair

(e1, e2) defines a directed edge from e1 to e2 in Γ1(M) if the terminus of e1 is

the origin of e2, that is, e1, e2 is a directed edge-path in Γ(M).
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Definition 8.1 (Normal Automaton): Let A be a finite alphabet. A normal

automaton over a finite alphabet A is a nondeterministic finite state automaton

M over A such that the following conditions hold:

(1) the automaton M has a nonempty set of accept states;

(2) the directed graph Γ(M) has at least one edge;

(3) the directed graph Γ(M) is strongly connected, that is for any two states

q, q′ of M there exists a directed edge-path from q to q′ in Γ(M).

The third condition in the above definition is the most important one as it

is responsible for the irreducibility of a Markov chain naturally associated to a

normal automaton:

Definition 8.2 (Associated Markov chain): Let M be a normal automaton over

a finite alphabet A. We define an associated finite state Markov chain M ′ as

follows. The set of states of M ′ is the set E of directed edges of Γ(M). If the

origin of f is not the terminus of e we put the transition probability pe,f = 0.

If the origin of f is equal to the terminus of e we put pe,f = 1/m, where m is

the total number of outgoing directed edges from the terminus of e.

Convention 8.3: Note that the sample space Ω for the Markov chainM ′ defined

above consists of all semi-infinite directed edge-paths

ω = e1, e2, . . . , en, . . .

in the graph Γ(M). Every such path has a label

w(ω) = a1a2 · · · ,

that is a semi-infinite word over the alphabet A. We will denote wn = wn(ω) :=

a1 · · · an, the initial segment of length n of w. The set Ω comes equipped with

the natural topology, where we think of Ω as the union of boundaries of rooted

trees (Te)e ∈ E. The vertices of Te are finite edge-path in Γ(M) beginning with

e. The Borel σ-algebra on Ω is generated by the following open-closed cylinder

sets Cyl(γ), where γ is a nonempty finite edge-path in Γ(M):

Cyl(γ) := {ω ∈ Ω : p is the initial segment of ω}.

If we put an initial probability distribution µ on E, this defines a Borel prob-

ability measure Pµ on Ω. This measure is defined on the cylinder sets by the

standard convolution formula. If γ = e1, . . . , en, where n > 1, then

Pµ(Cyl(γ)) := µ(e1)pe1,e2
pe2,e3

· · · pen−1,en
.
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If n = 1 then Pµ(Cyl(e)) := µ(e).

Lemma 8.4: Let M be a normal automaton. Then the associated finite state

Markov chain M ′ is irreducible. In particular, there is a unique stationary initial

probability distribution µ0 on the set of states E of M ′. This distribution has

the property µ0(e) > 0 for each e ∈ E.

Proof: To show that M ′ is irreducible we have to prove that for any two edges

e, f ∈ E there is n > 0 such that the n-step transition probability p
(n)
e,f > 0.

Since Γ(M) is strongly connected, there exists a directed edge-path γ in Γ(M)

from the terminus of e to the origin of f . Then eγf is a directed edge-path in

Γ(M) that starts with e and ends with f . Hence Γ1(M) is strongly connected

and therefore M ′ is irreducible.

The irreducibility of M ′ implies the existence and uniqueness of a positive

stationary distribution µ0 on E, as required.

If we fix an initial probability distribution µ on E, this defines a probability

measure Pµ on Ω.

Lemma 8.5: Let M be a normal automaton. Let M ′ be the associated finite

state Markov chain and let µ0 be the stationary initial distribution for M ′. Let

Z ⊆ Ω be a set such that Pµ0
(Z) = 0. Then for any other initial distribution µ

on E we have Pµ(Z) = 0.

Proof: Let µ and µ0 be as above. Put

c := max
{ µ(e)

µ0(e)
: e ∈ E

}
.

Note that 0 < c < ∞ since µ0(e) > 0 for each e ∈ E. Consider an arbitrary

cylinder set Cyl(γ) ⊂ Ω, where γ = e1, e2, . . . , en. From the definitions of Pµ

and Pµ0
we see that

Pµ(Cyl(γ)) =
µ(e1)

µ0(e1)
Pµ0

(Cyl(γ)) ≤ cPµ0
(Cyl(γ)).

Hence for an arbitrary Borel set Z ⊆ Ω we have Pµ(Z) ≤ cPµ0
(Z). In particular,

if Pµ0
(Z) = 0 then Pµ(Z) = 0.

The previous two lemmas depend only on the automaton M being normal.

Suppose now that L = L(M). For each state q choose a shortest path from q to

an accept state and let uq be the word in A∗ labelling that path. This is possible
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since Γ(M) is strongly connected and the set of accept states is nonempty by

the assumption on M . Note that uq is the empty word if and only if q is an

accept state. The lengths of uq are bounded above by some constant depending

on M . For a finite walk wn denote w′
n = wnuq, where q is the state in which

wn ends. Note that if wn begins in a state from I then w′
n ∈ L. Thus if µ

is an distribution supported on the set of edges in E(M) with initial vertices

from I and wn is obtained by performing n steps of the chain M ′ with initial

distribution µ, then w′
n ∈ L can be thought of as a “random” element of L.

We can now prove (a slight generalization of) Theorem J from the Introduc-

tion:

Theorem 8.6: Let M be a normal automaton over the alphabet A and let

L = L(M) be the language accepted by M .

Let φ: A∗ → G be a monoid homomorphism, where G is a group with a

left-invariant semi-metric dG. Then there exists a number λ = λ(M,φ, dG) ≥ 0

such that for any initial distribution µ on E(M) we have

lim
n→∞

|φ(wn)|G
n

= lim
n→∞

|φ(w′
n)|G
n

=λ almost surely and in L1 with respect to Pµ.

Proof: Let µ0 be the unique stationary initial distribution for M ′. As before

denote by S: Ω → Ω the shift operator which erases the first edge of every

ω = e1, e2, · · · ∈ Ω. Stationarity of µ0 means that S: (Ω, Pµ0
) → (Ω, Pµ0

) is

a measure-preserving map. Since M ′ is irreducible and aperiodic, S is also

ergodic.

As before, define Xn: Ω → R as

Xn(ω) := |φ(wn(ω))|G.

Then again it is easy to see that Xn ≥ 0, Xn+m(ω) ≤ Xn(ω) + Xm(Snω).

Hence by the Subadditive Ergodic Theorem there is λ ≥ 0 and there is a subset

Q ⊆ Ω with Pµ0
(Z) = 0 such that for any ω 6∈ Z

lim
n→∞

|φ(wn(ω))|G
n

= λ.

Let µ be an arbitrary initial distribution on E. Then by Lemma 8.5 we have

Pµ(Z) = 0. Thus

|φ(wn)|G
n

→ λ almost surely with respect to Pµ.

Note that by the left-invariance of dG we have |φ(w)|G ≤ K|w| where K =

max{|φ(a)|G : a ∈ A}. Hence Xn/n = |φ(wn)|G/n ≤ K and by the Dominated

Convergence Theorem almost sure convergence of Xn/n implies L1-convergence.
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Since dG is a seminorm on G and the length of any path w′
n differs from |wn|

by at most a fixed constant, it is also true that |φ(w′
n)|G differs from |φ(wn)|G

by at most a fixed constant and thus it is also the case that

lim
n→∞

|φ(w′
n(ω))|G
n

= lim
n→∞

|φ(wn(ω))|G
n

= λ.

There is substantial flexibility in the choice of the Markov chain M ′. The

proof of Theorem 8.6 goes through without change for any choice of transition

probabilities in M ′ such that pe,f > 0 whenever (e, f) is an edge of Γ1(M) and

pe,f = 0 whenever (e, f) is not an edge of Γ1(M).

9. Open Problems

Problem 9.1: Let φ be an arbitrary (not necessarily injective) endomorphism

of F = F (a1, . . . , ak). Is λ(φ) rational? Computable?

Problem 9.2: Let φ ∈ Aut(F ). What can be said about the behavior of

λ(φn) as n→ ∞? Same for n
√
λ(φn). How are these quantities connected with

growth rates of different (or perhaps just top) strata from relative train-track

representatives of φ?

It is clear that the asymptotics of λ(φn) should reflect the dynamical proper-

ties of φ. For example, it is not hard to see that for any Nielsen automorphism τ

the stretching factor λ(τn) grows at most linearly and lim supn→∞
n
√
λ(τn) = 1.

On the other hand, for hyperbolic automorphisms φ Theorem 7.3 implies that

lim infn→∞
n
√
λ(φn) > 1, so that the sequence (λ(φn))n grows exponentially.

Problem 9.3: Can one estimate (say in the sense of Large Deviations) the speed

of convergence |φ(ωn)|G/n→ λ(φ)?

We have seen that in the case of free group automorphisms for any ǫ > 0

Pn

( |φ(ωn)|
n

∈ (λ(φ) − ǫ, λ(φ) + ǫ)
)
→ 1

with exponentially fast convergence as n → ∞. Are there any other situations

where the speed of convergence in Theorem A can be estimated?

Problem 9.4: Let F = F (a1, . . . , ak) where k ≥ 2. Consider the set

W = {λ(φ) : φ: F → Aut(X) is a free simplicial action of F

on some simplicial tree X}.
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We know that W ⊆ Q and, moreover 2kW ⊆ Z[ 1
2k−1 ].

Is W a discrete subset of Q?

Problem 9.5: The notion of a generic stretching factor for φ ∈ Aut(F ) depends

on the choice of a free basis b = (a1, . . . , ak) of F and, more generally, on

the choice of a finite generating set S of F and the corresponding word metric

dS . Denote by λS(φ) the generic stretching factor of φ considered as a map

(F, dS) → (F, dS).

One can define the following uniform constants:

λ′(φ) := inf{λb(φ) : b is a free basis of F}

and

λ′′(φ) := inf{λS(φ) : S is a finite generating set of F}.

(Note that λ′′(φ) can be defined in the same fashion for an automorphism φ of

an arbitrary finitely generated group G.)

For φ ∈ Aut(F ), are the constants λ′(φ) and λ′′(φ) actually realized by some

free bases and finite generating sets of F accordingly? That is, are the above

infima actually minima? Are λ′(φ) and λ′′(φ) algorithmically computable?

Similarly we can define

||φ||′ = inf{||φ||b : b is a free basis of F}

and

||φ||′′ = inf{||φ||S : S is a finite generating set of F}.

Since both of these constants are integers, they are clearly realizable by some b

and S accordingly. Are these constants algorithmically computable?
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